Azzam, S.K., Alsafar, H., Sajini, A.A. (2022). FTO m6A demethylase in obesity and cancer: Implications and underlying molecular mechanisms. Int J Mol Sci. 23: 800. doi: 10.3390/ijms23073800.
Bar Yamin, H., Barnea, M., Genzer, Y. et al. (2014). Long-term commercial cow‘s milk consumption and its effects on metabolic parameters associated with obesity in young mice. Mol Nutr Food Res. 58: 1061-1068. doi: 10.1002/mnfr.201300650.
Briollais, L., Rustand, D., Allard, C. et al. (2021). DNA methylation mediates the association between breastfeeding and early-life growth trajectories. Clin Epigenetics. 13:231. doi: 10.1186/s13148-021-01209-z.
Bryder, L. (2009). From breast to bottle: a history of modern infant feeding. Endeavour. 33:54-59. doi: 10.1016/j.endeavour.2009.04.008.
Carnevalli, L.S., Masuda, K., Frigerio, F. et al. (2010). S6K1 plays a critical role in early adipocyte differentiation. Dev Cell. 18:763-774. doi: 10.1016/j.devcel.2010.02.018.
Cheshmeh, S., Nachvak, S.M., Rezvani, N. et al. (2020). Effects of breastfeeding and formula feeding on the expression level of FTO, CPT1A and PPAR-α genes in healthy infants. Diabetes Metab Syndr Obes. 13: 2227-2237. doi: 10.2147/DMSO.S252122.
Cheung, M., Gulati, P., O‘Rahilly, S. et al. (2013). FTO expression is regulated by availability of essential amino acids. Int J Obes 37:744–747. doi: 10.1038/ijo.2012.77.
de Mello, V.D., Pulkkinen, L., Lalli, M. et al. (2014). DNA methylation in obesity and type 2 diabetes. Ann Med. 46:103-113. doi: 10.3109/07853890.2013.857259.
Doaei, S., Kalantari, N., Izadi, P. et al. (2019). Interactions between macro-nutrients‘ intake, FTO and IRX3 gene expression, and FTO genotype in obese and overweight male adolescents. Adipocyte. 8:386-391. doi: 10.1080/21623945.2019.1693745.
Gulati, P., Cheung, M.K., Antrobus, R. et al. (2013). Role for the obesity-related FTO gene in the cellular sensing of amino acids. Proc Natl Acad Sci U S A. 110:2557-2562. doi: 10.1073/pnas.1222796110.
Haschke, F., Grathwohl, D., Detzel, P. et al. (2016). Postnatal high protein intake can contribute to accelerated weight gain of infants and increased obesity risk. Nestle Nutr Inst Workshop Ser. 8:101-109. doi: 10.1159/000439492.
Horta, B.L., Victora, C.G., França, G.V.A. et al. (2018). Breastfeeding moderates FTO related adiposity: a birth cohort study with 30 years of follow-up. Sci Rep. 8:2530. doi: 10.1038/s41598-018-20939-4.
Koletzko, B., von Kries, R., Monasterolo, R.C. et al. (2009). Infant feeding and later obesity risk. Adv Exp Med Biol. 646:15-29.doi: 10.1007/978-1-4020-9173-5_2.
Leiferman, A., Shu, J., Upadhyaya, B. et al. (2019). Storage of extracellular vesicles in human milk, and microRNA profiles in human milk exosomes and infant formulas. J Pediatr Gastroenterol Nutr. 69:235-238. doi: 10.1097/MPG.0000000000002363.
Liu, Q., Zhao, Y., Wu, R. et al. (2019). ZFP217 regulates adipogenesis by controlling mitotic clonal expansion in a METTL3-m6A dependent manner. RNA Biol. 16: 1785-1793. doi: 10.1080/15476286.2019.1658508.
Luque, V., Closa-Monasterolo, R., Escribano, J. et al. (2016). Early programming by protein intake: The effect of protein on adiposity development and the growth and functionality of vital organs. Nutr Metab Insights. 8:49-56. doi: 10.4137/NMI.S29525.
Mallisetty, Y., Mukherjee, N., Jiang, Y. et al. (2020). Epigenome-wide association of infant feeding and changes in DNA methylation from birth to 10 years. Nutrients. 13:99. doi: 10.3390/nu13010099.
Marousez, L., Lesage, J., Eberlé, D. (2019). Epigenetics: linking early postnatal nutrition to obesity programming? Nutrients. 11:2966. doi: 10.3390/nu11122966.
Melnik, B.C. (2012). Excessive leucine-mTORC1-signalling of cow milk-based infant formula: The missing link to understand early childhood obesity. J Obes. 2012:197653. doi: 10.1155/2012/197653.
Melnik, B.C. (2015). Milk – A nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 16:17048-17087. doi: 10.3390/ijms160817048.
Melnik, B.C., Schmitz, G. (2017). MicroRNAs: Milk‘s epigenetic regulators. Best Pract Res Clin Endocrinol Metab. 31:427-442. doi: 10.1016/j.beem.2017.10.003.
Melnik, B.C., Stremmel, W., Weiskirchen, R. et al. (2021). Exosome-derived microRNAs of human milk and their effects on infant health and development. Biomolecules. 11:851. doi: 10.3390/biom11060851.
Melnik, B.C., Weiskirchen, R., Stremmel, W. et al. (2024). Risk of fat mass- and obesity-associated gene-dependent obesogenic programming by formula feeding compared to breastfeeding. Nutrients. 16:2451. doi: 10.3390/nu16152451.
Obermann-Borst, S.A., Eilers, P.H., Tobi, E.W. et al. (2013). Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res. 74:344-349. doi: 10.1038/pr.2013.95.
Pietrobelli, A., Agosti, M.; MeNu Group. (2017). Nutrition in the first 1000 Days: Ten practices to minimize obesity emerging from published science. Int J Environ Res Public Health. 14:1491. doi: 10.3390/ijerph14121491.
Plagemann, A., Harder, T., Schellong, K., et al. (2012). Early postnatal life as a critical time window for determination of long-term metabolic health. Best Pract Res Clin Endocrinol Metab. 26:641-653. doi: 10.1016/j .beem.2012.03.008.
Rajamoorthi, A., LeDuc, C.A., Thaker, V.V. (2022). The metabolic conditioning of obesity: A review of the pathogenesis of obesity and the epigenetic pathways that »program« obesity from conception. Front Endocrinol (Lausanne). 13:1032491. doi: 10.3389/fendo.2022.1032491.
Ross, S.E., Hemati, N., Longo, K.A. et al. (2000). Inhibition of adipogenesis by Wnt signaling. Science. 289:950-953. doi: 10.1126/science.289.5481.950.
Sherwood, W.B., Kothalawala, D.M., Kadalayil, L. et al. (2020). Epigenome-wide association study reveals duration of breastfeeding is associated with epigenetic differences in children. Int J Environ Res Public Health. 17:3569. doi: 10.3390/ijerph17103569.
Sun, L., Gao, M., Qian, Q. et al. (2021). Triclosan-induced abnormal expression of miR-30b regulates fto-mediated m6A methylation level to cause lipid metabolism disorder in zebrafish. Sci Total Environ. 770:145285. doi: 10.1016/j.scitotenv.2021.145285.
Victora, C.G., Bahl, R., Barros A.J. et al. (2016). Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet. 387:475-490. doi: 10.1016/S0140-6736(15)01024-7.
Weil, P.P., Reincke, S., Hirsch, C.A. et al. (2023). Uncovering the gastrointestinal passage, intestinal epithelial cellular uptake, and AGO2 loading of milk miRNAs in neonates using xenomiRs as tracers. Am J Clin Nutr. 117:1195-1210. doi: 10.1016/j.ajcnut.2023.03.016.
World Health Organization. e-Library of evidence for nutrition actions (eLENA). Exclusive breastfeeding to reduce the risk of childhood overweight and obesity. https://www.who.int/tools/elena/interventions/breastfeeding-childhood-obesity.
Wu, Y.Y., Lye, S., Briollais, L. (2017). The role of early life growth development, the FTO gene and exclusive breastfeeding on child BMI trajectories. Int J Epidemiol. 46:1512—1522. doi: 10.1093/ije/dyx081.
Wu, R., Wang, X. (2021). Epigenetic regulation of adipose tissue expansion and adipogenesis by N6 -methyladenosine. Obes Rev. 22:e13124. doi: 10.1111/obr.13124.
Xiang, H., Zhong, Z.X., Peng, Y.D. et al. (2017). The emerging role of Zfp217 in adipogenesis. Int J Mol Sci. 18:1367. doi: 10.3390/ijms18071367.
Yang, Z., Yu, G.L., Zhu, X. et al. (2021). Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: Implications in lipid metabolic disorders. Genes Dis. 9:51-61. doi: 10.1016/j.gendis.2021.01.005.
Yi, S.A., Um, S.H., Lee, J. et al. (2016). S6K1 phosphorylation of H2B mediates EZH2 trimethylation of H3: A determinant of early adipogenesis. Mol Cell. 62:443-452. doi: 10.1016/j.molcel.2016.03.011.