Abbas, M.A., Al-Saigh, N.N., Saqallah, F.G. (2023). Regulation of adipogenesis by exosomal milk miRNA. Rev Endocr Metab Disord. 24:297–316. doi: 10.1007/s11154–023–09788–3
Admyre, C., Johansson, S.M., Qazi, K.R. et al. (2007). Exosomes with immune modulatory features are present in human breast milk. J Immunol. 179:1969–1978. doi: 10.4049/jimmunol.179.3.1969
Ahlberg, E., Al-Kaabawi, A., Thune, R. et al. (2023). Breast milk microRNAs: Potential players in oral tolerance development. Front Immunol. 14:1154211. doi: 10.3389/fimmu.2023.1154211
Ahlberg, E., Martí, M., Govindaraj, D. et al. (2023). Immune-related microRNAs in breast milk and their relation to regulatory T cells in breastfed children. Pediatr Allergy Immunol. 34:e13952. doi: 10.1111/pai.13952
Betran, A.P., Ye, J., Moller, A.B. et al. (2021). Trends and projections of caesarean section rates: global and regional estimates. BMJ Glob Health 6:e005671. doi: 10.1136/bmjgh-2021–005671
Bryder, L. (2009). From breast to bottle: a history of modern infant feeding. Endeavour 33:54–59. doi: 10.1016/j.endeavour.2009.04.008
Camacho-Morales, A., Caba, M., García-Juárez, M. et al. (2021). Breastfeeding contributes to physiological immune programming in the newborn. Front Pediatr. 9:744104. doi: 10.3389/fped.2021.744104
Chen, W., Wang, X., Yan, X. et al. (2020). The emerging role of exosomes in the pathogenesis, prognosis and treatment of necrotizing enterocolitis. Am J Transl Res. 12:7020–7033.
Cheshmeh, S., Nachvak, S.M., Rezvani, N. et al. (2020). Effects of breastfeeding and formula feeding on the expression level of FTO, CPT1A and PPAR-α genes in healthy infants. Diabetes Metab Syndr Obes. 13:2227–2237. doi: 10.2147/DMSO.S252122
Chiba, T., Kooka, A., Kowatari, K. et al. (2022). Expression profiles of hsa-miR-148a-3p and hsa-miR-125b-5p in human breast milk and infant formulae. Int Breastfeed J. 17:1. doi: 10.1186/s13006–021–00436–7
Chidester, S., Livinski, A.A., Fish, A.F. et al. (2020). The role of extracellular vesicles in β-cell function and viability: A scoping review. Front Endocrinol (Lausanne) 11:375. doi: 10.3389/fendo.2020.00375
Chutipongtanate, S., Morrow, A.L., Newburg, D.S. (2022). Human milk extracellular vesicles: A biological system with clinical implications. Cells 11:2345. doi: 10.3390/cells11152345
Golan-Gerstl, R., Elbaum Shiff, Y., Moshayoff, V. et al. (2017). Characterization and biological function of milk-derived miRNAs. Mol Nutr Food Res. 61(10). doi: 10.1002/mnfr.201700009
Gutman-Ido, E., Reif, S., Musseri, M. et al. (2022). Oxytocin regulates the expression of selected colostrum-derived microRNAs. J Pediatr Gastroenterol Nutr. 74:e8-e15. doi: 10.1097/MPG.0000000000003277
He, S., Liu, G., Zhu, X. (2021). Human breast milk-derived exosomes may help maintain intestinal epithelial barrier integrity. Pediatr Res. 90:366–372. doi: 10.1038/s41390–021–01449-y
Hicks, S.D., Beheshti, R., Chandran, D. et al. (2022). Infant consumption of microRNA miR-375 in human milk lipids is associated with protection from atopy. Am J Clin Nutr. 116:1654–1662. doi: 10.1093/ajcn/nqac266
Jaafar, R., Tran, S., Shah, A.N. et al. (2019). mTORC1 to AMPK switching underlies β-cell metabolic plasticity during maturation and diabetes. J Clin Invest. 129:4124–4137. doi: 10.1172/JCI127021
Jacovetti, C., Regazzi, R. (2022). Mechanisms underlying the expansion and functional maturation of β-cells in newborns: Impact of the nutritional environment. Int J Mol Sci. 23:2096. doi: 10.3390/ ijms23042096
Leiferman, A., Shu, J., Upadhyaya, B. et al. (2019). Storage of extracellular vesicles in human milk, and microRNA profiles in human milk exosomes and infant formulas. J Pediatr Gastroenterol Nutr. 69:235–238. doi: 10.1097/MPG.0000000000002363
Luo, Y., Bi, J., Lin, Y. et al. (2023). Milk-derived small extracellular vesicles promote bifidobacteria growth by accelerating carbohydrate metabolism. LWT Food Sci Technol. 182:114866. doi: 10.1016/j.lwt. 2023.114866
Madden, J.W. (2021). Human breast milk exosomes may protect against necrotizing enterocolitis in preterm infants. Pediatr Res. 90:244–245. doi: 10.1038/ s41390–021–01580-w
Manca, S., Upadhyaya, B., Mutai, E. et al. (2018). Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep. 8:11321. doi: 10.1038/s41598–018–29780–1
Matsumoto, L., Takuma, H., Tamaoka, A. et al. (2010). CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One;5:e15522. doi: 10.1371/journal. pone.0015522
Melnik, B.C. (2015). Milk – A nutrient system of mammalian evolution promoting mTORC1-dependent translation. Int J Mol Sci. 16:17048–17087. doi: 10.3390/ijms160817048
Melnik, B.C., John, S.M., Carrera-Bastos, P. et al. (2016). Milk: a postnatal imprinting system stabilizing FoxP3 expression and regulatory T cell differentiation. Clin Transl Allergy 6:18. doi: 10.1186/s13601–016–0108–9
Melnik, B.C., Stremmel, W., Weiskirchen, R. et al. (2021). Exosome-derived microRNAs of human milk and their effects on infant health and development. Biomolecules 11:851. doi: 10.3390/biom11060851
Melnik, B.C. (2021). Synergistic effects of milk-derived exosomes and galactose on α-synuclein pathology in Parkinson’s sisease and type 2 diabetes mellitus. Int J Mol Sci. 22:1059. doi: 10.3390/ijms22031059
Melnik, B.C, Schmitz, G. (2022). Milk exosomal microRNAs: Postnatal promoters of β cell proliferation but potential inducers of β cell de-differentiation in adult life. Int J Mol Sci. 23:11503. doi: 10.3390/ ijms231911503
Mutai, E., Zhou, F., Zempleni, J. (2017). Depletion of dietary bovine milk exosomes impairs sensorimotor gating and spatial learning in C57BL/6 mice. FASEB J. 31(S1):150.4. doi: 10.1096/fasebj.31.1_supplement.150.4
Ngu, A., Wang, S., Wang, H. et al. (2022). Milk exosomes in nutrition and drug delivery. Am J Physiol Cell Physiol. 322:C865-C874. doi: 10.1152/ajpcell. 00029.2022
Ohta, M., Koshida, S., Jimbo, I. et al. (2022). Highest concentration of breast-milk-derived exosomes in colostrum. Pediatr Int. 64:e15346. doi: 10.1111/ped.15346
Pérez-Escamilla, R., Tomori, C., Hernández-Cordero, S. et al. (2023). 2023 Lancet Breastfeeding Series Group. Breastfeeding: crucially important, but increasingly challenged in a market-driven world. Lancet 401:472–485. doi: 10.1016/S0140–6736(22)01932–8. Erratum in: Lancet. 2023; 401:916.
Röszer, T. (2021). Mother-to-child signaling through breast milk biomolecules. Biomolecules 11:1743. doi: 10.3390/biom11121743
Rose, A.T,. Patel, R.M. (2018). A critical analysis of risk factors for necrotizing enterocolitis. Semin Fetal Neonatal Med. 23:374–379. doi: 10.1016/j.siny.2018. 07.005
Shah, K.B., Chernausek, S.D., Garman, L.D. et al. (2021). Human milk exosomal microRNA: Associations with maternal overweight/obesity and infant body composition at 1 month of life. Nutrients 13:1091. doi: 10.3390/nu13041091
Shah, K.B., Fields, D.A., Pezant, N.P. et al. (2022). Gestational diabetes mellitus is associated with altered abundance of exosomal microRNAs in human milk. Clin Ther. 44:172–185.e1. Erratum in: Clin Ther. 2022;44:1034. doi: 10.1016/j.clinthera.2022.04.011
Sharma, M., Burré, J. (2023). α-Synuclein in synaptic function and dysfunction. Trends Neurosci. 46:153–166. doi: 10.1016/j.tins.2022.11.007
Słyk-Gulewska, P., Kondracka, A., Kwaśniewska, A. (2023). MicroRNA as a new bioactive component in breast milk. Noncoding RNA Res. 8:520–526. doi: 10.1016/j.ncrna.2023.06.003
Stoltz, T., Jones, A., Rogers, L. et al. (2021). Triclosan-induced abnormal expression of miR-30b regulates fto-mediated m6A methylation level to cause lipid metabolism disorder in zebrafish. Sci. Total Environ. 770:145285. doi: 10.1016/j.scitotenv.2021.145285
Stremmel, W., Weiskirchen, R., Melnik, B.C. (2020). Milk exosomes prevent intestinal inflammation in a genetic mouse model of ulcerative colitis: A pilot experiment. Inflamm Intest Dis. 5:117–123. doi: 10.1159/000507626
Tingö, L., Ahlberg, E., Johansson, L. et al. (2021). Non-coding RNAs in human breast milk: A systematic review. Front Immunol. 12:725323. doi: 10.3389/fimmu.2021.725323
Torrez Lamberti, M.F., Parker, L.A., Gonzalez, C.F. et al. (2023). Pasteurization of human milk affects the miRNA cargo of EVs decreasing its immunomodulatory activity. Sci Rep. 13:10057. doi: 10.1038/s41598– 023–37310-x
Verduci, E., Calcaterra, V., Di Profio, E. et al. (2021). Brown adipose tissue: New challenges for prevention of childhood obesity. A narrative review. Nutrients 13:1450. doi: 10.3390/nu13051450
Victora, C.G., Bahl, R., Barros, A.J. et al.. (2016). Lancet Breastfeeding Series Group. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387:475–490. doi: 10.1016/S0140– 6736(15)01024–7
Weil, P.P., Reincke, S., Hirsch, C.A. et al. (2023). Uncovering the gastrointestinal passage, intestinal epithelial cellular uptake, and AGO2 loading of milk miRNAs in neonates using xenomiRs as tracers. Am J Clin Nutr. 117:1195–1210. doi 10.1016/j.ajcnut. 2023.03.016
Zeng, R., Wang, J., Zhuo, Z. et al. (2021). Stem cells and exosomes: promising candidates for necrotizing enterocolitis therapy. Stem Cell Res Ther. 12:323. doi: 10.1186/s13287–021–02389–4
Zhang, C., Chi, H., Han, X. et al. (2023). Advances in the protection of intestinal mucosal barrier function by milk-derived miRNAs. Food Funct. 14:3909–3928. doi: 10.1039/D3FO00137G
Zhou, F., Paz, H.A., Sadri, M. et al. (2019). Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. Am J Physiol Gastrointest Liver Physiol. 317:G618-G624. doi: 10.1152/ ajpgi.00160.2019
Zhou, F., Ebea, P., Mutai, E. et al. (2022). Small extracellular vesicles in milk cross the blood-brain barrier in murine cerebral cortex endothelial cells and promote dendritic complexity in the hippocampus and brain function in C57BL/6J mice. Front Nutr. 9:838543. doi: 10.3389/fnut.2022.838543